Perovskite La\textsubscript{0.75}Sr\textsubscript{0.25}Cr\textsubscript{0.5}Mn\textsubscript{0.5}O\textsubscript{3-δ} Sensitized SnO\textsubscript{2} Fiber-in-Tube Scaffold: Highly Selective and Sensitive Formaldehyde Sensing

Joon-Young Kang, Ji–Soo Jang, Won-Tae Koo, Jongsu Seo, Yoonseok Choi, Min-Hyeok Kim, Dong-Ha Kim, Hee-Jin Cho, WooChul Jung and Il–Doo Kim*

In this work, highly porous SnO\textsubscript{2} fiber-in-tubes (FITs), which are functionalized with perovskite La\textsubscript{0.75}Sr\textsubscript{0.25}Cr\textsubscript{0.5}Mn\textsubscript{0.5}O\textsubscript{3-δ} (LSCM) particles as chemical sensitizer, are used as a superior formaldehyde (CH\textsubscript{2}O) sensing layer. LSCM-loaded as-spun Sn precursor/polymer composite fibers are rapidly calcined to create porous fiber-in-tube (FIT) SnO\textsubscript{2} structure with high surface area. Such unique morphological evolution originates from Ostwald ripening effect and crystal growth inhibition caused by LSCM particles. Furthermore, LSCM particles with high oxygen vacancies concentration and a large work function significantly promote oxygen spillover and electron depletion on the surface of SnO\textsubscript{2}(6.80 eV for LSCM vs. 4.55 eV for SnO\textsubscript{2}). As a result, LSCM-loaded SnO\textsubscript{2} FITs (LSCM@SnO\textsubscript{2} FITs) provide remarkably high response to formaldehyde (R\textsubscript{Foid}/R\textsubscript{air} = 26.50 to 5 ppm) and excellent selectivity against interfering gases (H\textsubscript{2}, C\textsubscript{6}H\textsubscript{6}, NH\textsubscript{3}, C\textsubscript{2}H\textsubscript{4}, C\textsubscript{2}H\textsubscript{6}O, C\textsubscript{6}H\textsubscript{6}O, CO, and C\textsubscript{2}H\textsubscript{2}) even without using noble metal catalysts. These observations demonstrate the potential use of LSCM@SnO\textsubscript{2} FITs for real-time monitoring of indoor air quality, especially toward formaldehyde, which has not been accurately detected by conventional metal oxide based sensors.

Introduction

Recently, detection of various toxic chemical gas species has emerged as a critical issue owing to their potential dangers posed to human body as well as the environment.1 For instance, toluene (C\textsubscript{6}H\textsubscript{5}H\textsubscript{6}), xylene (C\textsubscript{8}H\textsubscript{10}), and formaldehyde (CH\textsubscript{2}O) are major causes of sick building syndrome, which is a medical symptom that develops in people suffering from poor indoor air quality.1,2 In particular, inhalation of parts per million (ppm) level of formaldehyde in short time can cause significant health problems such as nausea (0.2–1.9 ppm), lachrymation (4–20 ppm), pulmonary edema (30–50 ppm), and even death (>50 ppm).3,4 Besides, since the sub-ppm levels of toxic vapors are odorless or colorless, it is difficult for a person to notice exposure to such gases. In this sense, sensitive and selective detection toward formaldehyde, particularly at sub-ppm concentration is highly required for accurate monitoring of indoor air quality.

Among various chemical gas sensing materials, semiconducting metal oxides (SMOs) have been commonly utilized due to their facile synthesis process, easy miniaturization, and low fabrication cost.6,7 In particular, given that the reaction between SMOs and target analytes occurs on the surface of SMOs, one-dimensional (1D) nanostructures with large surface area and high porosity are considered as one of the most ideal sensing layers.3 Among various synthetic routes for 1D structures, electrospinning has unique advantages due to easy tuning of composition and morphological tailoring including nanofibers (NFs),8 nanotubes (NTs),10 and fiber-in-tubes (FITs).11 In particular, the FIT nanostructures with voids between core fiber and thin shell can enlarge surface area as compared with the solid NFs or hollow NTs structures, facilitating gas diffusion onto porous sensing layers. Although FIT structures have been explored for energy storage materials,11,12 these unique structures have been rarely employed as chemiresistive gas sensing layers.

In addition to the facile synthesis of SMOs nanostructures with high porosity and enhanced surface area, their catalytic functionalization is essential to further enhance sensitivity and selectivity toward interfering gases. So far, noble metal catalysts such as Pt, Pd, and Rh have been widely studied to effectively promote the gas sensing properties of SMOs by means of electronic and/or chemical sensitization.8,13 However, scarcity of noble metals, their high costs, and sensor-to-sensor variation in performance due to the poisoning of these catalysts hinder their practical use in commercialized gas sensors. Moreover, nanoscale catalysts readily agglomerate and degrade after long operation cycles particularly at high operating temperature.14 Therefore, a new catalytic material with outstanding thermal stability and low cost is highly desired for SMOs-based chemiresistors.

Perovskite oxides (ABO\textsubscript{3}) have been extensively studied as stable oxide catalysts in diverse applications including electrochemical oxidation/reduction in solid oxide fuel cell.15
Li-air cell, and hydrocarbon oxidation in catalytic converters due to their excellent thermal stability, low cost, tunable electrical and redox properties by facile substitution of cations. Especially, some perovskite oxides such as LaCoO$_3$ and LaMnO$_3$ are known to possess outstanding oxygen storage capability, i.e., oxygen adsorption/desorption properties, which are ascribed to the generation of abundant oxygen vacancies within ABO$_3$ lattice. For instance, oxygen species in lanthanum-based perovskite desorb in certain ranges of temperature; desorption of oxygen species adsorbed on oxygen vacancies (O') at 300–700 °C and lattice oxygen (O$^-$) at temperatures higher than 700 °C.20

During the subsequent calcination, discretely decorated LSCM particles were transformed into the tubular structure, resulting in generation of fibrous core in the tubular structure, particles effectively hinder the outward diffusion of Sn ions, and hydrocarbon oxidation in catalytic converters. Here, LSCM particles were synthesized by combustion method using citric acid, as reported elsewhere. Briefly, 0.75 mmol of La(NO$_3$)$_3$·6H$_2$O (0.243 g), 0.25 mmol of Sr(NO$_3$)$_2$ (0.053 g), 0.5 mmol Cr(NO$_3$)$_3$·9H$_2$O (0.200 g), 0.5 mmol Mn(NO$_3$)$_2$·4H$_2$O (0.126 g) and 1 ml of ethylene glycol was added in 3 ml of deionized water (DIW). Then, 4 mmol of citric acid (0.768 g) was added to the nitrate precursors dissolved solution. After vigorous stirring at 70 °C, the precipitated gel was dried for overnight, and then heated at 350 °C for 1 h. Then the obtained powders were heated in ambient condition at 1100 °C for 8 h. As a result, LSCM particles with an average diameter of 215 nm were obtained.

Synthesis of LSCM@SnO$_2$ FITs, LCO@SnO$_2$ FITs, and SnO$_2$ NTs

To prepare the electrospinning solution, 0.25 g SnCl$_2$·2H$_2$O and 0.35 g of PVP were dissolved in 2.7 g of co-solvent consisting of 1.35 g of DMF and 1.35 g of ethanol and vigorously stirred at 300 rpm at room temperature for 5 h. Then, the different amounts of LSCM particles (4.18, 8.35, 16.7, and 25.1 mg, for 2.5, 5, 10, and 15 wt% LSCM loaded SnO$_2$ FITs, respectively) were added to the electrosprinnig solution and stirred at 60 °C for 8 h with stirring speed of 300 rpm. After stirring, LSCM particles were dispersed in the solution. The electrosprinnig solution was sonicated for 2 h in an ultrasonic bath to fully disperse LSCM particles and dissolve the metal precursors and PVP in the solution. After stirring and sonication step, LSCM particles were homogeneously dispersed in the electrosprinnig solution. Afterwards, electrosprinnig was carried out with the prepared solution at a constant voltage of 13 kV applied between the stainless collector and the metal syringe needle of 21 gauge. The feeding rate was set at 0.1 ml·min$^{-1}$ while the distance between the collector and needle was maintained at 15 cm. The as-spun NFs were collected on the stainless steel collector. As-spun NFs were transformed into LSCM@SnO$_2$ FITs upon heat treatment at 600 °C in air. To fabricate nanotubular structures, fast ramping rate of 10 °C·min$^{-1}$ was maintained during the calcination step. LaCoO$_3$-functionalized SnO$_2$ FITs (LCO@SnO$_2$ FITs) were prepared by the same experimental procedures, except that LCO particles were used instead of LSCM particles. In addition, pristine SnO$_2$ NTs were fabricated through the same experimental procedure without using LSCM particles.

Synthesis of LSCM@SnO$_2$ NFs and SnO$_2$ NFs

As-spun NFs were obtained by the same experimental procedure as LSCM@SnO$_2$ FITs. To fabricate densely packed fibers, a moderate ramping rate of 5 °C·min$^{-1}$ was maintained during the calcination of the as-spun NFs in air. Pristine SnO$_2$ NFs were fabricated through the same experimental process without using LSCM particles.

Evaluation of gas sensing performance

To measure the gas sensing characteristics, we fabricated gas sensors on Al$_2$O$_3$ substrates (area: 2.5 mm x 2.5 mm, thickness: 0.2 mm). The substrates are patterned with two parallel Au electrodes on the front side and Pt heater on the back side. 6 mg
of prepared sensing materials (LSCM@SnO$_2$ FITs, LCO@SnO$_2$ FITs and SnO$_2$ NTs) were dispersed in 300 μL of EtOH. Then, the dispersed solutions for each sensing material were drop-coated on the substrates. All the sensors were stabilized in ambient condition for 3 h before sensing tests. To investigate the sensitivity to target gas, the sensors were exposed to 8 kinds of gas species (formaldehyde, hydrogen disulfide, toluene, ammonia, ethanol, p-xylene, carbon monoxide, and pentane). The gases were injected for 10 minutes at each concentration in the range of 1-5 ppm with 10 min interval of air injection. We measured the resistance changes of each sensor by using data acquisition system (34972A, Agilent), and the obtained data were translated into gas response, i.e., $R_{\text{air}}/R_{\text{gas}}$, where R_{air} is the baseline resistance in air and R_{gas} is the resistance in gas. The response time of the sensor was calculated as the time to decrease the resistance by 90% of the difference ($R_{\text{air}} - R_{\text{gas}}$).

The operating temperature was controlled by applying a voltage to the Pt microheater using a DC power supply (E3647A, Agilent). The principal component analysis (PCA) was conducted by using IBM SPSS software.

Characterization

To investigate the microstructures and morphologies of the prepared samples, field emission scanning electron microscopy (Nova230, FEI) and field emission transmission electron microscopy (Tecnai, G2 F30 S-Twin, FEI) were used. Powder X-ray diffraction (D/MAX-2500, Rigaku) with Cu Kα radiation ($\lambda = 1.5418 \text{ Å}$) was conducted to confirm the crystal structure of the samples. X-ray photoelectron spectroscopy (K-alpha, Thermo VG Scientific) using Al Kα radiation was used to investigate the chemical binding states. Ultraviolet photoelectron spectroscopy (UPS) (Sigma Probe, Thermo VG...
Results and Discussion

Fig. 1a shows schematic illustration of the experimental procedure. The synthesized LSCM particles exhibited quasi-spherical shapes (Fig. 1b), with an average size of 215.7 nm, as previously reported (Fig. 1c). High resolution transmission electron microscopy (HRTEM) images and selected area electron diffraction (SAED) pattern revealed high crystallinity of LSCM particles, showing hexagonal crystal structure with (110) lattice plane. The electron diffraction pattern from (104), (110), and (214) crystal planes (Fig. 1d). The LSCM particles were introduced in the electrospinning solution and vigorously stirred. Upon subsequent electrospinning, LSCM particles were homogeneously distributed on the as-spun Sn precursor/PVP NFs (Fig. 1e and f). The as-spun Sn precursor/PVP/LSCM composite NFs were transformed into 1D SnO$_2$ nanotubular structures during calcination at 600 °C in air (ramping rate of 10 °C min$^{-1}$ from room temperature). LSCM particles were tightly immobilized on the 1D SnO$_2$ structures, inducing local bumpy surface morphologies (Fig. 1g). According to the previous studies, fast ramping rate during calcination of as-spun composite NFs results in the creation of tubular metal oxide (SnO$_2$) structures triggered by Ostwald ripening behavior of SnO$_2$, while moderate ramping rate (5 °C min$^{-1}$) forms densely packed SnO$_2$ NFs. It was reported that co-solvents (DMF and highly volatile ethanol) used for synthesis of as-spun composite NFs triggered Ostwald ripening during calcination. However, in this work, fiber-in-tube structures were formed upon rapid calcination (10 °C min$^{-1}$) of 5 wt% LSCM loaded as-spun Sn precursor/PVP NFs (Fig. 2a). This morphological feature is attributed to the grain growth inhibition effect of LSCM particles that hinders Ostwald ripening of SnO$_2$ during the ramping step. As Wu et al. demonstrated previously, during calcination the as-spun NFs undergo nanostructural evolution from dense fibers to tubes including core fibril structure, i.e., FITs, as intermediate structures. In our case, sub-micron sized LSCM particles affect inward diffusion of oxygen and outward diffusion of volatile byproducts and Sn ions during the ramping stage, thus hindering their escape from core of the NFs. Consequently, the unique FIT structures were formed. For comparison, we synthesized pristine SnO$_2$ NTs under the same experimental procedures without adding LSCM particles. As shown in Figure S1a, no fibrous SnO$_2$ were formed in the core of the NTs. Interestingly, loading amounts of LSCM particles affect morphological evolution of 1D SnO$_2$ structures. The interior fibers with smaller diameter (~80 nm) were formed in case of 2.5 wt% LSCM-loaded SnO$_2$ FITs compared to interior fiber diameter (~130 nm) of 5 wt% LSCM loaded SnO$_2$ FITs (Fig. S1b). On the other hand, the tubular structure was not observed in the case of 30 wt% LSCM-loaded SnO$_2$ because the excessive amount LSCM particles impeded the outward diffusion of Sn ions during calcination (Fig. S1c). To investigate the microstructures of LSCM@SnO$_2$ FITs in detail, transmission electron microscopy (TEM) analysis was conducted. The fiber-in-tube structure functionalized with LSCM particles was clearly identified (Fig. 2b). The fact that the grain sizes of the interior SnO$_2$ (~10 nm) are smaller compared to that (~40 nm) of SnO$_2$ comprising the shell indicates that crystallization of the shell was significantly influenced by Ostwald ripening, whereas the interior SnO$_2$ was not affected due to the grain growth inhibition caused by LSCM particles (Fig. 2c). HRTEM image shows the crystal planes of SnO$_2$ (110) and (101), and LSCM (110), which correspond to the interplanar spacing of 3.35 Å, 2.64 Å, and 2.74 Å, respectively (Fig. 2d). In addition, SAED patterns exhibit the SnO$_2$ crystal plane of (110), (101), and (211) (Fig. S2). However, the other crystal planes of LSCM were not clearly identified because they mostly remained inside the SnO$_2$ tubules. To further clearly confirm the existence of LSCM particles, energy dispersive X-ray spectroscopy (EDS) elemental mapping analysis was carried out (Fig. 2e). The EDS mapping images revealed that Sn and O were homogeneously distributed in the SnO$_2$ FIT structures. Similarly, La, Sr, Cr, and
Mn elements were also finely distributed in the two adjacent LSCM particles.

In order to investigate the crystal structures of LSCM particles, pristine SnO$_2$ NTs, and LSCM@SnO$_2$ FITs, we carried out X-ray diffraction (XRD) analysis (Fig. 3). The XRD results exhibited rhombohedral crystal structure of LSCM particles (JCPDS No. 01-070-8673), in agreement with SAED pattern (inset of Fig. 1d). The crystal planes of tetragonal SnO$_2$ (JCPDS No. 41-1445) were identified in both SnO$_2$ NTs and LSCM@SnO$_2$ FITs. Furthermore, the perovskite crystal planes of LSCM particles were observed in LSCM@SnO$_2$ FITs calcined at 600 °C due to the inherent high thermal stability of perovskite oxides. We selected perovskite LaCrO$_3$ (hereafter, LCO) particles as a control sample to compare their catalytic effect with LSCM particles as oxygen suppliers to the sensing layer. Since LCO particles have high thermal stability, their crystal planes (JCPDS No. 33-0701) were also maintained in calcined LCO@SnO$_2$ FITs (Fig. S3).

X-ray photoelectron spectroscopy (XPS) was carried out to verify the chemical bonding nature of each element (Fig. 4). The two distinct Sn 3d peaks assignable to Sn$^{4+}$ were observed at 486.5 and 495.0 eV for 3d$_{5/2}$ and 3d$_{3/2}$, respectively (Fig. 4a), indicating the formation of SnO$_2$. The asymmetric 1s peaks of oxygen revealed two chemical states corresponding to O$^{2-}$ and O$^-$ with binding energies of 530.3 and 531.1 eV, which represent lattice oxygen and chemisorbed oxygen species, respectively (Fig. 4b). In the case of LSCM particles-loaded SnO$_2$ FITs, the 3d peaks of La$^{3+}$ showed clear doublet split at 834.8 eV for 3d$_{5/2}$ and 851.2 eV for 3d$_{3/2}$, owing to the charge transfer from the ligand 2p to the La 4f levels, with the gap of ~3.7 eV between doublets (Fig. 4c). In the spectrum of Sr, two 3d peaks of Sr$^{2+}$ were observed at 133.6 and 135.7 eV that correspond to the 3d$_{5/2}$ and 3d$_{3/2}$ peaks, respectively, in the vicinity of Sn$^{4+}$ peak at 138.7 eV (Fig. 4d). The chemical states of Cr were identified as Cr$^{3+}$ and Cr$^{4+}$, 576.4 eV for 2p$_{1/2}$ and 585.9 eV for 2p$_{3/2}$ of Cr$^{3+}$, and 579.7 eV for 2p$_{1/2}$ and 588.1 eV for 2p$_{3/2}$ of Cr$^{4+}$ (Fig. 4e). Similarly, 2p$_{1/2}$ and 2p$_{3/2}$ peaks of Mn were deconvoluted into two peaks corresponding to Mn$^{3+}$ and Mn$^{4+}$ (Figure 4f). The 2p peaks of Mn were observed at 653.9 and 642.3 eV for 2p$_{1/2}$ and 2p$_{3/2}$, respectively. The peaks for 2p$_{1/2}$ and 2p$_{3/2}$ of Mn$^{2+}$ were observed at 641.1 and 652.8 eV, while the 2p$_{1/2}$ and 2p$_{3/2}$ peaks for Mn$^{3+}$ were observed at 642.6 and 654.9 eV, respectively.

In order to investigate the catalytic effect of perovskite LSCM sensitizers and morphological effect of fiber-in-tube structures on sensing performances, we measured the formaldehyde sensing characteristics of 5 different samples, i.e., pristine SnO$_2$ NFs, SnO$_2$ NTs, LCO@SnO$_2$ FITs, LSCM@SnO$_2$ NFs, and LSCM@SnO$_2$ FITs, using a homemade testing equipment. LaCrO$_3$ particles with an average size of 200 nm are stoichiometric perovskite oxides without any substitution or doping, so they were used to compare the effect of substitution on the catalytic ability of LSCM particles (Fig. S4a). LCO@SnO$_2$ FITs were prepared in the same way as LSCM@SnO$_2$ FITs, while LSCM@SnO$_2$ NFs were achieved upon calcination of as-spun NFs at moderate ramping rate of 5 °C min$^{-1}$ (Fig. S4b–d). The as-synthesized 1D sensing materials were dispersed in ethanol solution and sonicated to make a paste. Five sensors based on arrays of pristine SnO$_2$ NFs, SnO$_2$ NTs, LCO@SnO$_2$ FITs, LSCM@SnO$_2$ NFs, and LSCM@SnO$_2$ FITs were prepared by drop-coating the prepared paste on alumina substrates (more detail in the Experimental Section). We varied the loading amount of LSCM particles (pristine, 2.5, 5.0,
ARTICLE

10, and 15 wt%) to investigate an optimum loading weight, considering that the excessive loading of the catalysts can lead to the significant degradation of sensing properties. In addition, since the SMO based gas sensors exhibit temperature-dependent sensing characteristics, we carefully examined the sensing temperature in the range of 350–500 °C. Considering the oxygen chemisorption temperature on the surface of SnO$_2$ (200–500 °C) and specific temperature range (300–700 °C) for oxygen desorative property of perovskite, the sensing temperature should be optimized in high temperature range (350–500 °C). The sensing results indicated that 5 wt% LSCM@SnO$_2$ FITs exhibited the highest response toward 1–5 ppm of formaldehyde at 400 °C (Fig. S5). At same temperature, sensing properties of pristine SnO$_2$ NFs, SnO$_2$ NTs, 5 wt% LCO@SnO$_2$ FITs, 5 wt% LSCM@SnO$_2$ NFs, and 5 wt% LSCM@SnO$_2$ FITs toward formaldehyde were compared in the concentration range of 1–5 ppm (Fig. 5a). The LSCM@SnO$_2$ FITs showed the highest response to 5 ppm of formaldehyde ($R_{\text{air}}/R_{\text{gas}} = 26.50$), compared to that of LSCM@SnO$_2$ NFs ($R_{\text{air}}/R_{\text{gas}} = 6.60$), LCO@SnO$_2$ FITs ($R_{\text{air}}/R_{\text{gas}} = 5.17$), pristine SnO$_2$ NTs ($R_{\text{air}}/R_{\text{gas}} = 4.85$), and SnO$_2$ NFs ($R_{\text{air}}/R_{\text{gas}} = 3.12$). Moreover, LSCM@SnO$_2$ FITs exhibited highly improved response time (< 32 s) than that of LSCM@SnO$_2$ NFs (< 56 s), LCO@SnO$_2$ FITs (< 64 s), pristine SnO$_2$ NTs (< 76 s), and SnO$_2$ NFs (< 116 s) (Fig. 5b). The response times of sensors were calculated using R_{air} and R_{gas} values presented in Table S1. Detail calculation results of the response time were displayed in Fig. S6. In addition, LSCM@SnO$_2$ FITs and LSCM@SnO$_2$ NFs exhibited enhanced recovery speed (mean recovery time of 254.4 s and 231.2 s, respectively) compared to other control samples (Fig. S7).

Furthermore, to investigate the selectivity of LSCM@SnO$_2$ FITs, sensing tests toward 5 ppm of various gas molecules, i.e., formaldehyde (CH$_2$O), hydrogen disulfide (H$_2$S), p-xylene (C$_8$H$_8$), toluene (C$_7$H$_8$), ethanol (C$_2$H$_5$OH), pentane (C$_5$H$_{12}$), carbon monoxide (CO), and ammonia (NH$_3$) were carried out at 400 °C (Fig. 5c). LSCM@SnO$_2$ FITs exhibited superior selectivity toward formaldehyde ($R_{\text{air}}/R_{\text{gas}} = 26.50$), while showing much lower responses ($R_{\text{air}}/R_{\text{gas}} < 7$) to interfering analytes. Moreover, LSCM@SnO$_2$ FITs showed excellent stability ($R_{\text{air}}/R_{\text{gas}} = 25.38 \pm 0.93$) against 11 repeated sensing tests toward 5 ppm of formaldehyde at 400 °C (Fig. 5d). These results clearly revealed that the LSCM particles on SnO$_2$ FITs acted as effective sensitizers, particularly for the selective detection of formaldehyde gas.

The distinctive formaldehyde sensing characteristics of LSCM@SnO$_2$ FITs are attributed to three features, i.e., (i) formation of heterojunction between SnO$_2$ and LSCM particles, (ii) catalytic effect of LSCM particles with abundant oxygen vacancy sites, and (iii) structural effects of FIT nanostructures (Fig. 6a). These effects can be interpreted as follows. The dynamic resistance variation graphs of SnO$_2$ NFs, SnO$_2$ NTs, LCO@SnO$_2$ FITs, LSCM@SnO$_2$ NFs, and LSCM@SnO$_2$ FITs were compared as shown in Fig. 6b. Basically, the sensing mechanism of SMOs involves the resistance variation by the surface reaction between chemisorbed oxygen and analyte gas molecules. The width of depletion region of n-type SMOs becomes thinner when reducing gas molecules such as formaldehyde react with chemisorbed oxygen species and provide electrons to SMOs. Therefore, numerous sites for chemisorbed oxygen and large depletion region on the surface in air atmosphere can lead to the high response toward target gases. The results exhibited the increase in baseline resistance of LSCM@SnO$_2$ FITs (253.03 kΩ), compared to that of pristine SnO$_2$ NFs (17.86 kΩ) SnO$_2$ NTs (13.64 kΩ), LCO@SnO$_2$ FITs (78.42 kΩ), and LSCM@SnO$_2$ NFs (140.08 kΩ), which is attributed to the enlarged electron depletion region due to formation of a heterojunction between SnO$_2$ and LSCM (LCO) particles. Since the work function of SnO$_2$ (4.55 eV) is lower than that of LSCM particles (6.8 eV), which was analyzed by ultraviolet photoelectron spectroscopy (UPS) (Fig. 58), the transition of electrons can be induced from SnO$_2$ to LSCM. Thus, huge electron depletion region formed on SnO$_2$ by the creation of heterojunction leads to the increased baseline resistance. Similarly, the increase in baseline resistance was also confirmed in LCO@SnO$_2$ FITs due to the heterojunction between SnO$_2$ and LCO (work function = 6.2 eV). It is known that the substitution of Sr$^2+$ in La-based perovskite increases work function of perovskite. Therefore, the electron depletion region at the surface of SnO$_2$ can be further modulated by increased heterojunction effect. Accordingly, the smaller work function of LCO (6.2 eV) compared to that of LSCM (6.8 eV) induce lower Schottky barrier between the
interface of SnO₂ and LCO, resulting in lower baseline resistance of LCO@SnO₂ FITs compared to that of LSCM@SnO₂ FITs. However, LSCM@SnO₂ FITs exhibited dramatically improved resistance variation upon exposure to formaldehyde gas compared with control samples. In case of LSCM@SnO₂ NFs, LSCM particles were immobilized inside NFs, thus the catalytic effect of LSCM particles was less evident, resulting in a small decrease in resistance.

To further demonstrate the catalytic activity of LSCM particles on formaldehyde sensing characteristics, we carried out ex-situ XPS analysis of pristine SnO₂ NTs, LCO@SnO₂ FITs, and LSCM@SnO₂ FITs right after heating the samples at 400 °C in ambient condition for 5 h. Since the chemisorbed oxygen (O⁰⁻ and O²⁻) are the main reaction sites for analytes, we specifically investigated the XPS spectra of O 1s. Typically, chemisorbed oxygen species on the surface of SMOs are mainly O⁻ ions in the temperature range of 200–400 °C. Therefore, we calculated the relative peak areas of chemisorbed oxygen to lattice oxygen, i.e., O⁻/O²⁻, which indicates the relative amount of the chemisorbed oxygen on the surface. At first, the O 1s spectra of LSCM@SnO₂ FITs, LCO@SnO₂ FITs, and pristine SnO₂ NTs were evaluated at room temperature (Fig. 6c). The peak ratios for LSCM@SnO₂ FITs, LCO@SnO₂ FITs, and pristine SnO₂ NTs were 0.91, 0.80, and 0.73, respectively, which were calculated from peak area values presented in Table 1. It was observed that the three peak ratios increased to 1.49, 0.95, and 0.90, respectively (Fig. 6d) after heating at 400 °C for 5 h. In addition, peak areas of O⁻ were increased for all samples after heating (Table 1), indicating that the main oxygen species on the SMOs at 400 °C are chemisorbed oxygen species. Notably, LSCM@SnO₂ FITs exhibited the highest increase in the peak ratio (60.9%) upon heating, compared to that of LCO@SnO₂ FITs (35.7%) and pristine SnO₂ NTs (23.3%), indicating the increase of the reaction sites for target gas on the surface of SMOs at 400 °C. This result reveals that the surface oxygen sources mainly originated from LSCM particles at an optimized sensing temperature (400 °C). It is well known that the partial substitution of A-site trivalent cation into divalent cation can induce oxygen vacancies for charge compensation. Thus, one can expect the increase in the concentration of surface oxygen species (O⁻) by introducing Sr⁴⁺ at the site of La³⁺, since oxygen species (O⁻) on the surface of perovskite are mainly adsorbed weakly in oxygen vacancies. In addition, electron migration due to formation of heterojunction between SnO₂ and LSCM may reduce Mn⁴⁺ to Mn³⁺, resulting in formation of oxygen vacancies for charge compensation. The valences of Mn (Mn⁴⁺ and Mn³⁺) in LSCM@SnO₂ FITs compared to single valence of Mn⁴⁺ in pristine LSCM revealed the partial reduction of Mn⁴⁺ to Mn³⁺ (Fig. 4F and Fig. 5a). In fact, owing to the chemical nature of Cr that strongly prefers six-fold coordination, it is hard to generate oxygen vacancies in LaCrO₃. Fig. 5b proves the effect of substitution, showing the higher surface oxygen ratio for LSCM (1.60) that LCO (1.40) and O⁻ peak area. Furthermore, the surface oxygen on the perovskite oxides can spread over to the surface of SMOs, similar to the chemical sensitization of noble metal catalysts, i.e., spillover effect. Therefore, LSCM particles provide numerous oxygen species to the surface of SnO₂ leading to the increase in gas reaction sites. As additional LSCM@SnO₂ FITs toward lower binding energy after heating at 400 °C (Fig. 5b). This result was attributed to the increased evidence, we confirmed a slight peak shift of 3d peaks of Sn⁴⁺ of chemisorbed oxygen species on the surface of SnO₂ FITs, which act as surface trap sites, forming upward band bending at the surface. In addition, as shown in Fig. S11, the resistance of LSCM particles was almost constant upon exposure to formaldehyde, indicating that chemical reaction was mainly occurred on the surface of SnO₂ FITs as well as the reaction between LSCM particles and formaldehyde was negligible. Since formaldehyde is a reducing gas, it reacts with the surface oxygen species, donating the trapped electrons back to the conduction band of SMOs by the following equations:

\[
\text{HCHO} + 2\text{O}^-(\text{ads}) \rightarrow \text{CO}_2 + \text{H}_2\text{O} + 2e^- \\
\text{HCHO} + \text{O}^-(\text{ads}) \rightarrow \text{CHOOH} + e^-.
\]

Accordingly, peak ratios of chemisorbed oxygen species in LSCM@SnO₂ FITs, LCO@SnO₂ FITs, and pristine SnO₂ NTs (1.48, 1.01, and 0.92, respectively) were increased for all samples after heating (Table 1), indicating that the main oxygen species on the SMOs at 400 °C are chemisorbed oxygen species. Notably, LSCM@SnO₂ FITs exhibited the highest increase in the peak ratio (60.9%) upon heating, compared to that of LCO@SnO₂ FITs (35.7%) and pristine SnO₂ NTs (23.3%), indicating the increase of the reaction sites for target gas on the surface of SMOs at 400 °C. This result reveals that the surface oxygen sources mainly.

Table 1. Spectra feature tables of oxygen 1s of LSCM@SnO₂ FITs at after heating at 400 °C and room temperature.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Element / Transition</th>
<th>Peak Area [eV counts]</th>
<th>Peak ratio [O/O⁰⁻]</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 °C</td>
<td>O⁻ (1s) in LSCM@SnO₂</td>
<td>96799.45</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>O (1s) in LSCM@SnO₂</td>
<td>143634.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O⁺ (1s) in LCO@SnO₂</td>
<td>100564.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O (1s) in SnO₂</td>
<td>100171.00</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>O⁻ (1s) in SnO₂</td>
<td>112276.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O (1s) in LSCM@SnO₂</td>
<td>101538.60</td>
<td>0.90</td>
</tr>
<tr>
<td>R.T</td>
<td>O⁻ (1s) in LSCM@SnO₂</td>
<td>93706.99</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>O (1s) in LSCM@SnO₂</td>
<td>85741.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O⁺ (1s) in LCO@SnO₂</td>
<td>101538.60</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>O (1s) in LCO@SnO₂</td>
<td>71077.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O⁻ (1s) in SnO₂</td>
<td>131451.08</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>O (1s) in SnO₂</td>
<td>96192.19</td>
<td></td>
</tr>
</tbody>
</table>

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 7
Table 2. Recent publications about SMOs-based gas sensors for detecting formaldehyde gas molecules.

<table>
<thead>
<tr>
<th>Sensing Material</th>
<th>Response ($R_{\text{off}}/R_{\text{on}}$)</th>
<th>Detection limit</th>
<th>Operating temperature</th>
<th>Response time</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag@LaFeO$_3$ nanofibers</td>
<td>4.80 at 5 ppm</td>
<td>5 ppm</td>
<td>230 °C</td>
<td>2 s at 20 ppm</td>
<td>41</td>
</tr>
<tr>
<td>CuO@TiO$_2$ nanofibers</td>
<td>15.5 at 50 ppm</td>
<td>5 ppm</td>
<td>200 °C</td>
<td>1.4 s at 10 ppm</td>
<td>42</td>
</tr>
<tr>
<td>WO$_3$/In$_2$O$_3$ nanosheets</td>
<td>25 at 100 ppm</td>
<td>0.1 ppm</td>
<td>170 °C</td>
<td>1 s at 100 ppm</td>
<td>43</td>
</tr>
<tr>
<td>Hierarchical ZnO architectures</td>
<td>35 at 100 ppm</td>
<td>–</td>
<td>260 °C</td>
<td>1 s at 100 ppm</td>
<td>44</td>
</tr>
<tr>
<td>CeSn_2O$_4$ hierarchical microspheres</td>
<td>5.50 at 100 ppm</td>
<td>–</td>
<td>200 °C</td>
<td>4 s at 200 ppm</td>
<td>45</td>
</tr>
<tr>
<td>SnO$_2$ microspheres</td>
<td>38.28 at 100 ppm</td>
<td>–</td>
<td>200 °C</td>
<td>17 s at 100 ppm</td>
<td>46</td>
</tr>
<tr>
<td>Co-rich ZnCo$_2$O$_4$ Hollow nanospheres</td>
<td>7.5 at 1 ppm</td>
<td>13 ppb</td>
<td>230 °C</td>
<td>149 s at 1 ppm</td>
<td>47</td>
</tr>
<tr>
<td>LSCM@SnO$_2$ FITs</td>
<td>26.5 at 5 ppm</td>
<td>80 ppb</td>
<td>400 °C</td>
<td>32 s at 1 ppm</td>
<td>this work</td>
</tr>
</tbody>
</table>

0.95, and 0.90, respectively) were directly related to their sensitivity, where LSCM@SnO$_2$ FITs exhibited exceptional sensitivity toward formaldehyde ($R_{\text{off}}/R_{\text{on}} = 26.50 @ 5$ ppm) compared to that of LCO@SnO$_2$ FITs ($5.17 @ 5$ ppm) and SnO$_2$ NTs ($4.85 @ 5$ ppm) (Fig. 5a). In short, the catalytic performances of perovskite on the sensing characteristics of SMOs can be maximized by cation substitution. In our case, we introduced Sr and Mn in the site of La and Cr, respectively. As a result, the electron depletion region was increased by doping of Sr and Mn, and the amount of surface oxygen species that can be adsorbed on the surface of SMOs was maximized by inducing oxygen vacancies on the perovskite by doping of Sr and Mn.

In addition to the catalytic performance of LSCM particles, the FIT structure has a great influence on the formaldehyde sensing performances. To investigate the structural effect in terms of surface area and porosity, we carried out Brunauer-Emmett-Teller (BET) analysis for surface area and pore size distribution of 5 wt% LSCM@SnO$_2$ FITs and 5 wt% LSCM@SnO$_2$ NFs. The LSCM@SnO$_2$ FITs exhibited larger surface area (10.79 m2 g$^{-1}$) compared to that of LSCM@SnO$_2$ NFs (8.63 m2 g$^{-1}$), which is attributed to the tubular structure, i.e., fibers inside the tubes (Fig. 6e). Furthermore, the pore size distribution demonstrated higher pore volume of LSCM@SnO$_2$ FITs in the mesopore range (2–50 nm) compared to LSCM@SnO$_2$ NFs, which implies that hollow structures of LSCM@SnO$_2$ FITs (Fig. 6f) facilitate gas permeation. Due to enlarged surface area and high porosity, LSCM@SnO$_2$ FITs showed higher response (26.50 to 5 ppm) and shorter response time (<32s) toward formaldehyde gas than LSCM@SnO$_2$ NFs (6.15 to 5 ppm and response time of <32s) (Fig. 5a and b). These results demonstrated the synergistic effect between FIT structures and LSCM particles, and the significance of FITs for effective catalytic performance of perovskite oxides.

To demonstrate the potential capability of LSCM@SnO$_2$ FITs for practical application in real-time monitoring of formaldehyde gas, a limit of detection of LSCM@SnO$_2$ FITs sensors was approximated by extrapolating the sensing results (Fig. 7a). The calibrated curve anticipated a response of 1.48 to 80 ppb of formaldehyde. Considering that WHO (World Health Organization) indoor guideline level of formaldehyde is 80 ppb, this result implies the potential feasibility of LSCM@SnO$_2$ FITs for practical implementation as CH$_2$O detecting sensors. In addition, to confirm the feasibility of LSCM@SnO$_2$ FITs for the selective detection of formaldehyde against interfering gases, a principal component analysis (PCA) was conducted using two different sensors, i.e., pristine SnO$_2$ NTs and 5 wt% LSCM@SnO$_2$ FITs (Fig. 7b). PCA is a statistical tool that can classify sensing data based on their similarity. The formaldehyde molecules were clearly distinguished in a three-dimensional space from interfering gases (H$_2$, C$_2$H$_6$, NH$_3$, C$_3$H$_6$, C$_4$H$_6$, CO, and C$_2$H$_5$OH), showing superior selectivity of the sensor array. The sensing performance of the rationally designed LSCM@SnO$_2$ FITs, exhibited the highest ranking formaldehyde sensing characteristics in terms of sensitivity, response time, and detection limit, in comparison with reported SMOs-based formaldehyde gas sensors (Table 2). The selective detection capability of LSCM@SnO$_2$ FITs toward formaldehyde signifies that it can be potentially applied to real-time monitoring of indoor air quality.

Conclusion

In summary, we successfully utilized perovskite La$_{0.75}$Sr$_{0.25}$Cr$_{0.5}$Mn$_{0.5}$O$_3$ (LSCM) particles as new catalysts for electrospun 1D SMOs-based chemiresistive materials. The LSCM particles were tightly immobilized in the nanotubular structures upon calcination at fast ramping rate. During calcination, the LSCM particles impeded the migration of Sn ions as well as the outward diffusion of gaseous byproducts, thereby forming fibrous structure inside nanotubes, i.e., LSCM@SnO$_2$ FITs. Interestingly, LSCM particles affected the formaldehyde sensing performances of SnO$_2$ in terms of catalytic and structural effects, i.e., i) the oxygen providing effect of LSCM perovskite, which serves as a role of chemical sensitization like noble metal catalysts, ii) large heterojunction effect due to differences in work function (4.55 eV of SnO$_2$ versus 6.8 eV of LSCM), resulting in larger electron depletion region, and iii) structural effect of FIT structures with enlarged surface area and high porosity. On the basis of these advantages, LSCM@SnO$_2$ FITs showed superior response...
toward 5 ppm of formaldehyde ($R_{\text{air}}/R_{\text{mod}} = 26.50 @ 400^\circ \text{C}$), with high selectivity and stability. Based on these results, chemiresistors using LSCM@SnO$_2$ FITs as sensing layers can find application in real-time monitoring of indoor air quality. Furthermore, a combination of perovskite oxides and nanostructured SMOs can be applied as chemical gas sensors, providing excellent catalytic effects.

Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF), grant no. 2014R1A4A1003712 (BRL Program). This research also was supported by Research and Business Development Program through the Korea Institute for Advancement of Technology (KIAT) funded by the Ministry of Trade, Industry and Energy (MOTIE) (grant number: N0002418). This work was also supported by Wearable Platform Materials Technology Center (WMC) funded by National Research Foundation of Korea (NRF) Grant of the Korean Government (MSIP) (No. 2016R1A5A1009926).

Notes and references
The table of contents